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ABSTRACT

In this study, Harmonic Balance Method (HBM) is applied to determine
approximate analytic solutions of strongly nonlinear Duffing oscillators
with cubic-quintic nonlinear restoring force. Mainly, a set of nonlinear
algebraic equations is solved in this method. The new method avoids
the necessity of numerically solving sets of algebraic equations with very
complex nonlinearities. Numerical comparisons between the HBM and
the exact solutions reveal that the HBM is a promising tool for strongly
nonlinear oscillator’s problems.
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1. Introduction

Basically in different fields of science and engineering there are few issues
occurring linear whereas a great number of problems result in the nonlinear sys-
tems. Nonlinear oscillations are important fact in physical science, mechanical
structures and other engineering problems. The methods of solutions of linear
differential equations are comparatively easy and well established. On the con-
trary, the techniques of solutions of nonlinear differential equations (NDEs) are
less available and, in general, linear approximations are frequently used. With
the discovery of numerous phenomena of self- excitation of a strongly nonlinear
cubic-quintic Duffing oscillator and in many cases of nonlinear mechanical vi-
brations of special types, the methods of small oscillations become inadequate
for their analytical treatment.

In recent year, nonlinear processes are one of the biggest challenges and
not easy to control because the nonlinear characteristic of the system abruptly
changes due to some small changes of valid parameters including time. Thus the
issue becomes more complicated and hence needs ultimate solution. Therefore,
the studies of approximate solutions of NDEs play a crucial role to under-
stand the internal mechanism of nonlinear phenomena. Advanced nonlinear
techniques are significant to solve inherent nonlinear problems, particularly
those involving differential equations, dynamical systems and related areas.
Presently, both mathematicians and physicists have made significant improve-
ment in finding a new mathematical tool related to NDEs and dynamical sys-
tems whose understanding will rely not only on analytic techniques but also on
numerical and asymptotic methods. They establish many effective and power-
ful methods to handle the NDEs.

The study of given nonlinear problems is of crucial importance not only in
all areas of physics but also in engineering and other disciplines, since most
phenomena in our world are essentially nonlinear and are described by NDEs.
Moreover, obtaining exact solutions for these problems has many difficulties.
It is very difficult to solve nonlinear problems and in general it is often more
difficult to get an analytic approximation than a numerical one for a given
nonlinear problem. To overcoming the shortcomings, many new analytical
methods have proposed these days. One of the widely used techniques is per-
turbation and asymptotic method (Chowdhury, 2012, 2013, Cveticanin, 2010,
Elmas, 2014, Gupta, 2014, Nayfeh, 1973, Nazari-Golshan, 2013, Sedighi and At-
tarzadeh, 2013), whereby the solution is expanded in powers of a small param-
eter. Perturbation method gives deviated results for strongly nonlinear oscilla-
tor. However, for the nonlinear conservative systems, generalizations of some of
the standard perturbation techniques overcome this limitation. In particular,
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generalization of modified differential transforms method and He’s homotopy
perturbation method yield desired results even for strongly nonlinear oscillators
(Belendez, 2009b, Nourazar, 2013). Several scientists also used various other
powerful analytical methods in the field of approximate solutions especially for
strongly nonlinear oscillators like Max-Min Approach Method (MMAM), Pa-
rameter Expansion Method (PEM), Variational Iteration Method (VIM) and
Amplitude Frequency Formulation (AFF) for solving strongly NDEs (Azimi,
2012, Baghani, 2012, Ganji, 2012b, He, 2008). Some researchers already found
the approximation solutions for strongly nonlinear cubic-quintic Duffing oscil-
lators using He’s Energy balance Method, Iteration Perturbation Method and
Newton-harmonic balancing method (Ganji, 2012a, 2009, Lai, 2008). In these
types of methods, with obtaining the motion frequency and having the initial
conditions the result achieved. Most of the methods which discussed above the
simplification procedure are tremendously difficult task especially for obtaining
higher order approximations.

Harmonic balance method is another method for solving strongly NDEs
(Hu, 2006, Mickens, 1996, 1984, 1986). Afterwards some researchers modified
HBM for solving NDEs (Belendez, 2009a, Leung, 2012, Xiao, 2013). Gener-
ally, a set of difficult nonlinear algebraic equations are appear when harmonic
balance method is formulated. But in classical harmonic balance method and
some modification of harmonic balance method there is no clear idea for solv-
ing these complicated nonlinear higher order algebraic equations. To overcome
this limitation, we have presented an analytical technique based on HBM for
solving strongly nonlinear conservative systems (García-Saldana, 2013, Hosen,
2013a,b, 2014, 2012, Karkar, 2014, Rahman, Kong). The higher order approx-
imations (mainly third-order approximation) have been obtained for strongly
nonlinear cubic-quintic Duffing oscillators. Comparison of the approximate fre-
quencies obtained in this article with its exact frequencies which shows that
this method is effective and convenient for solving these analytical results.

2. Solution procedure

Let us consider a nonlinear differential equation

ẍ+ ω2
0x = −εf(x) and initial condition [x(0) = a0, ẋ(0) = 0] (1)

where f(x) is a nonlinear function such that f(−x) = −f(x), ω0 ≥ 0 and ε is
a constant. Consider a periodic solution of Eq. (1) is in the form

x = a0(ρcos(ωt) + ucos(3ωt) + vcos(5ωt) + wcos(7ωt) + zcos(9ωt) + · · · ) (2)
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where a0, ρ and ω are constants. If ρ = 1 − u − v − · · · and the initial phase
ϕ0 = 0, the solution of the form as Eq. (2) easily satisfies the initial condition
(1). Substituting Eq. (2) into Eq. (1) and expanding f(x) in a Fourier cosine
series, it becomes to an algebraic identity

a0[(ρ(ω
2
0 − ω2) cos(ωt) + u(ω2

0 − 9ω2)cos(3ωt) + · · · ] =
−ε[F1(a0, u, · · · )cos(ωt) + F3(a0, u, · · · )cos(3ωt) + · · · ] (3)

where Fi(a0, u, v, · · · ), i = (2n + 1), n = 0, 1, 2, · · · is a nonlinear algebraic
mathematical expression. By comparing the coefficients of equal harmonics of
Eq. (3), the following nonlinear algebraic equations are found

ρ(ω2
0 − ω2) = −εF1, u(ω2

0 − 9ω2) = −εF3, v(ω2
0 − 25ω2) = −εF5, · · · (4)

With help of the first equation, ω2 is eliminated from all the remaining equa-
tions of Eq. (4). Thus Eq. (4) takes the following form

ρω2 = ρω2
0 + εF1, 8ω

2
0uρ = ε(ρF3 − 9uF1), 24ω

2
0vρ = ε(ρF5 − 25vF1), · · · (5)

Substitution ρ = 1− u− v − · · · , and simplification, second-, third- equations
of Eq. (5) take the following form

u = G1(ω0, ε, a0, u, v, · · · , λ0), v = G2(ω0, ε, a0, u, v, · · · , λ0), · · · , (6)

where G1, G2, · · · exclude respectively the linear terms of u, v, · · · .

Whatever the values of ω0, ε and a0 there exists a parameter λ0(ω0, ε, a0)� 1,
such that u, v, · · · are expandable in the following power series in terms of λ0
as

u = U1λ0 + U2λ
2
0 + · · · , v = V1λ0 + V2λ

2
0 + · · · , · · · , (7)

where U1, U2, · · · , V1, V2, · · · are constants.

Finally, substituting the values of u, v, · · · from Eq. (7) into the first equation
of Eq. (5), ω is determined. This completes the determination of all related
functions for the proposed periodic solution as given in Eq. (2).

3. General Definition of Cubic-Quintic Duffing
Oscillators

A cubic-quintic Duffing oscillator has the general form of

ẍ+ f(x) = 0, (8)
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with initial conditions of

x(0) = a0, ẋ(0) = 0, (9)

where f(x) = αx+ βx3 + γx5. x and t are generalized dimensionless displace-
ment and time variable respectively and x is the function of t.
The exact frequency ωex is calculated by imposing the mentioned initial con-
ditions is stated in (Lai, 2008) as

ωex(a0) =
πk1

2
∫ π/2
0

(1 + k2 sin
2 t+ k3 sin

4 t)−1/2dt
, (10)

where

k1 =

√
α+

βa20
2

+
γa40
4
,

k2 =
3βa20 + 2γa40

6α+ 3βa20 + 2γa40
,

k3 =
2γa40

6α+ 3βa20 + 2γa40
.

4. Solution procedure of Cubic-Quintic Duffing
oscillators

The complete solution procedure of cubic-quintic duffing oscillator (Eq. (8))
with α = β = γ = 1 is presented by HBM. Furthermore, the comparison
between the frequencies obtained by HBM and the exact ones are shown in
Table 1. This table corresponds to small as well as large amplitude of mentioned
oscillator which obtained by HMB as described in the following example.
Rewrite the general form of cubic-quintic Duffing oscillator in Eq. (8), with
α = β = γ = 1 as

ẍ+ x+ x3 + x5 = 0. (11)

Herein we have to determine second- and third-order approximations of the
frequency for the cubic-quintic Duffing oscillator.
Let us consider a two-term solution, i.e., x = a0(ρ cos(ω2t) + u cos(3ω2t)) for
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the Eq. (11). Substituting this solution along with ρ = 1−u into the Eq. (11),
Eq. (3) becomes

(1− u)ω2
2 cos(ω2t) + 9uω2

2 cos(3ω2t) = (1 + 3a20/4 + 5a40/8− u− 3a20u/2

−25a40u/16 + 9a20u
2/4 + · · · ) cos(ω2t) + (a20/4 + 5a40/16 + u+ 3a20u/4 (12)

−9a20u2/4 + · · · ) cos(3ω2t) +HOH,

whereHOH stands for higher order harmonics. Now comparing the coefficients
of equal harmonics, the following equations are obtained

(1− u)ω2
2 = 1 + 3a20/4 + 5a40/8− u− 3a20u/2− 25a40u/16 +

9a20u
2/4 + 15a40u

2/4 + · · ·
9uω2

2 = a20/4 + 5a40/16 + u+ 3a20u/4 + 5a40u/16− (13)
9a20u

2/4− 5a40u
2/2 + · · ·

From the first equation of Eq. (13), it becomes

ω2
2 = (1 + 3a20/4 + 5a40/8− u− 3a20u/2− 25a40u/16 + 9a20u

2/4 + (14)
15a40u

2/4 + · · · )/(1− u)

by elimination of ω2
2 from the second equations of Eq. (13) with the help of

Eq. (14) and simplification, the following nonlinear algebraic equation of u is
found

−a20/4− 5a40/16 + 8u+ 25a20u/4 + 45a40u/8− 8u2−
21a20u

2/2− 45a40u
2/4 + 16a20u

3 + 25a40u
3−

23a20u
4/2− 675a40u

4/16 + 355a40u
5/8− 85a40u

6/4 = 0

(15)

The Eq. (15) can be written as

u = λ0(4 + 5a20 + 128u2/a20 + 168u2 − 256u3 + 184u4 − 710a20u
5 + · · · ), (16)

where λ0 = a20/(128 + 100a20 + 90a40). The power series solution of Eq. (16) in
terms of λ0 is obtained as

u = (4 + 5a20)λ0 + (7808 + 2048/a20 + 12800a20 +

11400a40 + 4500a60)λ
3
0 + · · · .

(17)

Substituting the value of u from Eq.(17) into the Eq. (14) and then simpli-
fication the second order approximate angular frequency is appeared as the
following

ω2 =
[
(16− 36a20 − 110a40 − 75a60)λ0/16+

(384a20 + 1680a40 + 2400a60 + 1125a80)λ
2
0/16 + · · ·

] 1
2 (18)
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Thus a two-term solution (i.e. second approximation) of Eq. (11) is

x = a0 cos(ω2t) + a0u(cos(3ω2t)− cos(ω2t)), (19)

where u and ω2 are given respectively by Eqs. (17) and (18).
In a similar way, the method can be used to determine higher-order approxi-
mations. In this article, a third approximate solution is,

x = a0 cos(ω3t) + a0u(cos(3ω3t)− cos(ω3t)) + a0v(cos(5ω3t)− cos(ω3t)) (20)

Substituting Eq. (20) into the Eq. (11) and equating the coefficients of same
harmonic terms cos(ω3t), cos(3ω3t) and cos(5ω3t) the related equations are

(1− u− v)ω2
3 = 1 + 3a20/4 + 5a40/8− u− 3a20u/2− 25a40u/16 +

9a20u
2/4 + 15a40u

2/4− 3a20u
3/2− 25a40u

3/4 +

25a40u
4/4− 45a40u

5/16− v − 9a20v/4−
45a40v/16 + 9a20uv/2 + 10a40uv −

3a20u
2v − 75a40u

2v/4 + · · · ,

9uω2
3 = a20/4 + 5a40/16 + u+ 3a20u/4 + 5a40u/16− 9a20u

2/4− (21)
5a40u

2/2 + 2a20u
3 + 25a40u

3/4− 125a40u
4/16 +

65a40u
5/16− 5a40v/16− 3a20uv/2− 5a40uv/2 +

3a20u
2v/2 + 75a40u

2v/8 + · · · ,

25vω2
3 = a40/16 + 3a20u/4 + 15a40u/16− 3a20u

2/4− 5a40u
2/2 +

25a40u
3/8− 25a40u

4/16− a40u5/16 + v + 3a20v/2 +

25a40v/16− 9a20uv/2− 35a40uv/4 + 15a20u
2v/4

+75a40u
2v/8 + · · · .

From the first equation of Eq. (21),

ω2
3 = (1 + 3a20/4 + 5a40/8− u− 3a20u/2− 25a40u/16 + 9a20u

2/4 +

15a40u
2/4− 3a20u

3/2− 25a40u
3/4 + 25a40u

4/4− 45a40u
5/16−

v − 9a20v/4− 45a40v/16 + 9a20uv/2 + 10a40uv − (22)
3a20u

2v − 75a40u
2v/4 + · · · )/(1− u− v).

Eliminating ω2
3 from last two equations of Eq. (21) with the help of Eq. (22)

and the simplified form of nonlinear algebraic equations of u and v are as follows

u = λ0
(
4 + 5a20 + 168u2 − 256u3 − 4v − 10a20v+

288uv + 128uv/a20 − 564u2v + · · ·
)

(23)
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v = µ0

(
a20 + 12u+ 14a20u− 24u2 + 12u3 + 492uv+

384uv/a20 − 756u2v + 540u3v + · · ·
)

(24)

where λ0 is defined as Eq. (16) and µ0 = a20/(384 + 276a20 + 226a40).
The algebraic relation between λ0 and µ0 is

µ0 =
(64 + 50a20 + 45a40)λ0
192 + 138a20 + 113a40

. (25)

Therefore, Eq. (24) takes the form

v =
(64 + 50a20 + 45a40)λ0
192 + 138a20 + 113a40

(a20 + 12u+ 14a20u− 24u2 +

12u3 + 492uv + 384uv/a20 − 756u2v + 540u3v + · · · ). (26)

The power series solutions of Eq. (23) and Eq. (26) are obtained in terms of
λ0

u = (4 + 5a20)λ0 −
(256 + 840a20 + 680a40 + 450a60)

192 + 138a20 + 113a40
a20λ

2
0 + · · · , (27)

v =

(
(64 + 50a20 + 45a40)a

2
0λ

2
0 + (3072 + 9824a20)λ

2
0

192 + 138a20 + 113a40
+

(12440a40 + 8720a60 + 3150a80)λ
2
0

192 + 138a20 + 113a40
+ · · ·

)
. (28)

Now substituting the values of u and v from Eqs. (27)-(28) into Eq. (22), the
third-order approximate angular frequency is

ω3 =

[
−
(−1536 + 2352a20 + 12908a40

8(192 + 138a20 + 113a40)
+

18544a60 + 12805a80 + 5025a100
8(192 + 138a20 + 113a40)

)
λ0 + · · ·

] 1
2

. (29)

Therefore, a third-order approximation periodic solution of Eq. (11) is defined
as Eq. (20) where u, v and ω3 are respectively given by the Eqs. (27)-(28) and
Eq. (29).

5. Results and Discussion

We illustrate the accuracy of the second and third order approximate fre-
quencies and their relative errors Er(%) obtained in present study by using
HBM of the cubic-quintic Duffing oscillator comparing with previously obtained
and the exact frequency ωex are the following Table 1. For this nonlinear prob-
lem, the exact frequency is stated by S.K. Lai et al. (Lai, 2008). It can clearly
be seen that all the approximate frequencies obtained in this article applying
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Table 1: Comparison of the approximate frequencies obtained by our technique and other existing
result with exact frequency ωex (Ganji, 2009) of cubic-quintic Duffing oscillator.

a0 ω2 ω3 ωex ωEBM(Ganji, 2009)

Er(%) Er(%) Er(%)
0.1 1.003772 1.003772 1.003770 1.003773

0.0001 0.0001 0.0002
0.3 1.035540 1.035538 1.035540 1.035492

0.0000 0.0001 0.0046
0.5 1.106591 1.106545 1.106540 1.106356

0.0046 0.0004 0.0166
1.0 1.526041 1.523762 1.523590 1.527720

0.1608 0.0112 0.2710
3.0 7.367509 7.284161 7.268630 7.417768

1.3603 0.2136 2.0518
5.0 19.482606 19.231700 19.181500 19.608793

1.5697 0.2617 2.2276
8.0 49.086138 48.428975 48.294600 49.390624

1.6389 0.2782 2.2694
10.0 76.421355 75.389512 75.177400 76.889585

1.6546 0.2821 2.2775

HBM is better than those obtained previously by D. D Ganji et al. (Ganji,
2009), S. S. Ganji et al. (Ganji, 2012a) and S.K. Lai et al. (Lai, 2008). In
adding, the third-order approximate results give almost similar comparing with
exact frequencies. It has been mentioned that the procedure of D. D Ganji et
al. (Ganji, 2009), S. S. Ganji et al. (Ganji, 2012a) and S.K. Lai et al. (Lai,
2008) is laborious especially for obtaining higher order approximations. Com-
paring the results obtained in this article with previously obtained by several
authors it has been shown that the proposed method is simpler than several
exiting procedures. The advantages of this method include its simplicity and
computational efficiency, and the ability to objectively find better agreement
in third-order approximate frequency.
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ω2 and ω3 respectively denote second- and third- order approximate fre-
quencies obtained by HBM. ωex represents the exact frequency obtained by
numerical method. ωEBM[15] represents the approximate frequency obtained in
(Ganji, 2009). Er(%) denotes the percentage error obtained by the relation
|ωex−ωi

ωex
× 100| where i = 2, 3.
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